On Semilocal Convergence of Inexact Newton Methods
نویسندگان
چکیده
Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative method for solving the Newton equations is specified to be the splitting method, we get two estimates about the iteration steps for the special inexact Newton methods. Mathematics subject classification: 65H10.
منابع مشابه
On Semilocal Convergence of Inexact Newton
Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...
متن کاملSemilocal and global convergence of the Newton-HSS method for systems of nonlinear equations
Newton-HSS methods, that are variants of inexact Newton methods different from Newton-Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices [Bai and Guo, 2010]. In that paper, only local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we introduce N...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA semilocal convergence analysis of an inexact Newton method using recurrent relations
We extend the applicability of an inexact Newton method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The recurrent relations method is used to prove the existence-convergence theorem. Our error bounds are tighter and the information on the location of the solution at least as precise under the same information as before. Our results compar...
متن کاملA semilocal convergence analysis for directional Newton methods
A semilocal convergence analysis for directional Newton methods in n-variables is provided in this study. Using weaker hypotheses than in the elegant related work by Y. Levin and A. Ben-Israel and introducing the center-Lipschitz condition we provide under the same computational cost as in Levin and Ben-Israel a semilocal convergence analysis with the following advantages: weaker convergence co...
متن کامل